Integrated spectrometer

Grating based

Interferometer based

Grating based Integrated spectrometer

Seong-Ho Kong, J. H. Correia, G. de Graaf, M. Bartek and R. F. Wolffenbuttel, "Integrated silicon microspectrometers," in *IEEE Instrumentation & Measurement Magazine*, vol. 4, no. 3, pp. 34-38, 2001.

Grating based Integrated spectrometer

Seong-Ho Kong, J. H. Correia, G. de Graaf, M. Bartek and R. F. Wolffenbuttel, "Integrated silicon microspectrometers," in *IEEE Instrumentation & Measurement Magazine*, vol. 4, no. 3, pp. 34-38, 2001.

Fabry-Perot Interferometer spectrometer

Seong-Ho Kong, J. H. Correia, G. de Graaf, M. Bartek and R. F. Wolffenbuttel, "Integrated silicon microspectrometers," in *IEEE Instrumentation & Measurement Magazine*, vol. 4, no. 3, pp. 34-38, 2001.

Fabry-Perot Interferometer spectrometer

1. R.F. Wolffenbuttel, *Silicon Sensors and Circuits: On-Chip Compatibility.*, 1996.

2. H. Correia, et al., "Single-chip CMOS optical micro interferometer", *Sens. Actuators A Phys.*, vol. 82, pp. 191-197, 2000.

Ultra-compact dispersion element free computational spectrometer (detector only)

Zongyin Yang et al. Science 2019;365:1017-1020

Wavelength Selective Photodetectors Integrated on a Single Composition-Graded Semiconductor Nanowire

R is 1.03×10^3 A W⁻¹ with 488 nm at 75 μ W cm⁻²

Wavelength Selective Photodetectors Integrated on a Single Composition-Graded Semiconductor Nanowire

Advanced Optical Materials, Volume: 6, Issue: 12, First published: 03 April 2018, DOI: (10.1002/adom.201800293)

Single-nanowire spectrometers

by Zongyin Yang, Tom Albrow-Owen, Hanxiao Cui, Jack Alexander-Webber, Fuxing Gu, Xiaomu Wang, Tien-Chun Wu, Minghua Zhuge, Calum Williams, Pan Wang, Anatoly V. Zayats, Weiwei Cai, Lun Dai, Stephan Hofmann, Mauro Overend, Limin Tong, Qing Yang, Zhipei Sun, and Tawfique Hasan

> Science Volume 365(6457):1017-1020 September 6, 2019

Zongyin Yang et al. Science 2019;365:1017-1020

Reconstruction Algorithm

$$\int_{\lambda_{min}}^{\lambda_{max}} F(\lambda) R_i(\lambda) \, d\lambda = I_i \qquad (i = 1, 2, 3, ..., n)$$

$$F(\lambda)\approx \widehat{F}(\lambda)=\sum_{j=1}^m \alpha_j\phi_j(\lambda)$$

$$\varphi_j(\lambda) = \frac{1}{\sigma\sqrt{2\pi}} exp\left[-\frac{1}{2}\left(\frac{\lambda - \hat{\lambda}_j}{\sigma}\right)^2\right]$$

$$\sum_{j=1}^{m} \left(\int_{\lambda_{min}}^{\lambda_{max}} R_i(\lambda) \phi_j(\lambda) d\lambda \right) \alpha_j = I_i$$

$$A\alpha = c$$

Peaks become indistinguishable once the separation is decreased to 10 nm.

Despite a reduction in footprint of about two to three orders of magnitude, such resolution is comparable to that of other visible-range spectral reconstruction microspectrometers

Zongyin Yang et al. Science 2019;365:1017-1020

Fig. 3 Scanning spectral imaging at the macroscale.

Zongyin Yang et al. Science 2019;365:1017-1020

Fig. 4 Spectral imaging at the micrometer scale.

Zongyin Yang et al. Science 2019;365:1017-1020

On-Chip Measurement of Photoluminescence with High Sensitivity Monolithic Spectrometer

Advanced Optical Materials, First published: 06 April 2020, DOI: (10.1002/adom.202000191)

Detector-Only Spectrometer Based on Structurally Colored Silicon Nanowires and a Reconstruction Algorithm

65 to 175 nm

$$I_k = \int_{\lambda_1}^{\lambda_2} R_k(\lambda) P(\lambda) + n_k(\lambda) d\lambda, \quad k = 1, 2, ..., N$$

where $P(\lambda)$ is input spectrum, I_k is the photocurrent of photodetector k, R_k is the responsivity spectrum of photodetector k, and n_k is the measurement noise. N is the number of photodetectors. λ_1 and λ_2 are the bounds of the spectrum. After discretization, eq.1 can be expressed in vector form as follow

$$I_k = \mathbf{R}_k^T[\lambda]\mathbf{P}[\lambda] + n_k, \quad k = 1, 2, ..., N$$

where $\mathbf{R}_{k}^{T}[\lambda]$, $\mathbf{P}[\lambda]$ are the row and column vector forms of R_{k} and P_{k} .

DOI: (10.1021/acs.nanolett.9b03862)